Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Yaoxue Xuebao ; 58(4):928-937, 2023.
Article in Chinese | EMBASE | ID: covidwho-20244443

ABSTRACT

Dayuanyin (DYY) has been shown to reduce lung inflammation in both coronavirus disease 2019 (COVID-19) and lung injury. This experiment was designed to investigate the efficacy and mechanism of action of DYY against hypoxic pulmonary hypertension (HPH) and to evaluate the effect of DYY on the protection of lung function. Animal welfare and experimental procedures are approved and in accordance with the provision of the Animal Ethics Committee of the Institute of Materia Medica, Chinese Academy of Medical Science. Male C57/BL6J mice were randomly divided into 4 groups: control group, model group, DYY group (800 mg.kg-1), and positive control sildenafil group (100 mg.kg-1). The animals were given control solvents or drugs by gavage three days in advance. On day 4, the animals in the model group, DYY group and sildenafil group were kept in a hypoxic chamber containing 10% +/- 0.5% oxygen, and the animals in the control group were kept in a normal environment, and the control solvent or drugs continued to be given continuously for 14 days. The right ventricular systolic pressure, right ventricular hypertrophy index, organ indices and other metrics were measured in the experimental endpoints. Meantime, the expression levels of the inflammatory factors in mice lung tissues were measured. The potential therapeutic targets of DYY on pulmonary hypertension were predicted using network pharmacology, the expression of nuclear factor kappa B (NF- kappaB) signaling pathway-related proteins were measured by Western blot assay. It was found that DYY significantly reduced the right ventricular systolic pressure, attenuated lung injury and decreased the expression of inflammatory factors in mice. It can also inhibit hypoxia-induced activation of NF- kappaB signaling pathway. DYY has a protective effect on lung function, as demonstrated by DYY has good efficacy in HPH, and preventive administration can slow down the disease progression, and its mechanism may be related to inhibit the activation of NF-kappaB and signal transducer and activator of transcription 3 (STAT3) by DYY.Copyright © 2023, Chinese Pharmaceutical Association. All rights reserved.

2.
Drug Evaluation Research ; 45(5):842-852, 2022.
Article in Chinese | EMBASE | ID: covidwho-20244430

ABSTRACT

Objective To explore the potential common mechanism and active ingredients of Reduning Injection against SARS, MERS and COVID-19 through network pharmacology and molecular docking technology. Methods The TCMSP database was used to retrieve the chemical components and targets of Artemisiae Annuae Herba, Lonicerae Japonicae Flos and Gardeniae Fructus in Reduning Injection. The gene corresponding to the target was searched by UniProt database, and Cytoscape 3.8.2 was used to build a medicinal material-compound-target (gene) network. Three coronavirus-related targets were collected in the Gene Cards database with the key words of "SARS""MERS" and "COVID-19", and common target of three coronavirus infection diseases were screened out through Venny 2.1.0 database. The common targets of SARS, MERS and COVID-19 were intersected with the targets of Reduning Injection, and the common targets were selected as research targets. Protein-protein interaction (PPI) network map were constructed by Cytoscape3.8.2 software after importing the common targets into the STRING database to obtain data. R language was used to carry out GO biological function enrichment analysis and KEGG signaling pathway enrichment analysis, histograms and bubble charts were drew, and component-target-pathway network diagrams was constructed. The key compounds in the component-target-pathway network were selected for molecular docking with important target proteins, novel coronavirus (SARS-CoV-2) 3CL hydrolase, and angiotensin-converting enzyme II (ACE2). Results 31 active compounds and 207 corresponding targets were obtained from Reduning Injection. 2 453 SARS-related targets, 805 MERS-related targets, 2 571 COVID-19-related targets, and 786 targets for the three diseases. 11 common targets with Reduning Injection: HSPA5, CRP, MAPK1, HMOX1, TGFB1, HSP90AA1, TP53, DPP4, CXCL10, PLAT, PRKACA. GO function enrichment analysis revealed 995 biological processes (BP), 71 molecular functions (MF), and 31 cellular components (CC). KEGG pathway enrichment analysis screened 99 signal pathways (P < 0.05), mainly related to prostate cancer, fluid shear stress and atherosclerosis, hepatocellular carcinoma, proteoglycans in cancer, lipid and atherosclerosis, human T-cell leukemia virus 1 infection, MAPK signaling pathway, etc. The molecular docking results showed that the three core active flavonoids of quercetin, luteolin, and kaempferol in Reduning Injection had good affinity with key targets MAPK1, PRKACA, and HSP90AA1, and the combination of the three active compounds with SARS-CoV-2 3CL hydrolase and ACE2 was less than the recommended chemical drugs. Conclusion Reduning Injection has potential common effects on the three diseases of SARS, MERS and COVID-19. This effect may be related to those active compounds such as quercetin, luteolin, and kaempferol acting on targets such as MAPK1, PRKACA, HSP90AA1 to regulate multiple signal pathways and exert anti-virus, suppression of inflammatory storm, and regulation of immune function.Copyright © 2022 Drug Evaluation Research. All rights reserved.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; 29(1):82-90, 2023.
Article in Chinese | EMBASE | ID: covidwho-2316540

ABSTRACT

Objective: Pneumonia is an infectious inflammation of the alveoli,distal airway,and interstitium caused by bacterial,viral,and other pathogens. Maxing Shigantang,originated from Treatise On Cold Damage Diseases,is a classic prescription for treating pneumonia,with significant clinical efficacy. However,its treatment mechanism is still elusive. Method(s): In that paper,the transcriptome-based multi-scale network pharmacology was used to reveal the overall pharmacological mechanism of Maxing Shigantang in treating pneumonia from six scales of tissue,cell,pathological process,biological process,signaling pathway, and target. Result(s):At the tissue level,Maxing Shigantang mainly acted on the focal tissue of pneumonia-lung and the main inflammatory immune tissues-blood and spleen. Analysis of cell,pathological process and biological process suggested that Maxing Shigantang could treat pneumonia by reversing inflammatory and immune functions and improving cardiopulmonary and vascular injury caused by pneumonia. Analysis of signaling pathway and target showed that Maxing Shigantang regulated inflammatory immune response pathways such as "coronavirus disease-COVID-19" and "Toll-like receptor signaling pathway",and related targets such as "MAPKAPK3" and "NRG1". Conclusion(s):This paper,from molecular to tissue levels,indicated Maxing Shigantang treated pneumonia mainly by regulating inflammatory immune response and improving cardiopulmonary and vascular injury.Copyright © 2023, China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica. All rights reserved.

4.
Pharmacological Research - Modern Chinese Medicine ; 3 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2287232

ABSTRACT

Network pharmacology is a method to study the mechanism of a Traditional Chinese Medicine (TCM) prescription on a disease. However, most articles using network pharmacology to study the mechanism did not combine the weight information of herbs, the weight information of targets of disease, and the interaction information between targets together. We propose a method, network pharmacology combined with two iterations of PageRank algorithm, to make use of these information. It takes prescription-disease system as a whole, calculates PageRank score of targets in the prescription-disease system, which means an importance in the system, and the score is used to rank the analysis results of GO and KEGG pathway which help us to analyze the mechanism of a prescription on a disease. At last, we use two prescription-disease pairs which have been proved effectiveness in clinical trials: Qingfei Paidu Decoction on COVID-19, and FuFang DanShen Diwan on Coronary Heart Disease, and find that the results of our method are consistent with some results of clinical trials.Copyright © 2021

5.
Pharmacological Research - Modern Chinese Medicine ; 2 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2280747

ABSTRACT

Coronavirus disease 2019 (COVID-19), first reported in Wuhan, China, has rapidly spread worldwide. Traditional Chinese medicine (TCM) has been used to prevent and treat viral epidemics and plagues for over 2,500 years. In the guidelines on fighting against COVID-19, the National Health Commission of the People's Republic of China has recommended certain TCM formulas, namely Jinhua Qinggan granule (JHQGG), Lianhua Qingwen granule (LHQWG), Qingfei Paidu decoction (QFPDD), Xuanfei Baidu granule (XFBD), Xuebijing injection (XBJ), and Huashi Baidu granule (HSBD) for treating COVID-19 infected individuals. Among these six TCM formulas, JHQGG and LHQWG effectively treated mild/moderate and severe COVID-19 infections. XFBD therapy is recommended for mild COVID-19 infections, while XBJ and HSBD effectively treat severe COVID-19 infections. The internationalization of TCM faces many challenges due to the absence of a clinical efficacy evaluation system, insufficient research evidence, and a lack of customer trust across the globe. Therefore, evidence-based research is crucial in battling this infectious disease. This review summarizes SARS-CoV-2 pathogenesis and the history of TCM used to treat various viral epidemics, with a focus on six TCM formulas. Based on the evidence, we also discuss the composition of various TCM formulas, their underlying therapeutic mechanisms, and their role in curing COVID-19 infections. In addition, we evaluated the roles of six TCM formulas in the treatment and prevention of other influenza diseases, such as influenza A (H1N1), severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). Furthermore, we highlighted the efficacy and side effects of single prescriptions used in TCM formulas.Copyright © 2021

6.
Heliyon ; 9(3): e14029, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2288593

ABSTRACT

Acute lung injury (ALI) is a clinically severe lung illness with high incidence rate and mortality. Especially, coronavirus disease 2019 (COVID-19) poses a serious threat to world wide governmental fitness. It has distributed to almost from corner to corner of the universe, and the situation in the prevention and control of COVID-19 remains grave. Traditional Chinese medicine plays a vital role in the precaution and therapy of sicknesses. At present, there is a lack of drugs for treating these diseases, so it is necessary to develop drugs for treating COVID-19 related ALI. Fagopyrum dibotrys (D. Don) Hara is an annual plant of the Polygonaceae family and one of the long-history used traditional medicine in China. In recent years, its rhizomes (medicinal parts) have attracted the attention of scholars at home and abroad due to their significant anti-inflammatory, antibacterial and anticancer activities. It can work on SARS-COV-2 with numerous components, targets, and pathways, and has a certain effect on coronavirus disease 2019 (COVID-19) related acute lung injury (ALI). However, there are few systematic studies on its aerial parts (including stems and leaves) and its potential therapeutic mechanism has not been studied. The phytochemical constituents of rhizome of F. dibotrys were collected using TCMSP database. And metabolites of F. dibotrys' s aerial parts were detected by metabonomics. The phytochemical targets of F. dibotrys were predicted by the PharmMapper website tool. COVID-19 and ALI-related genes were retrieved from GeneCards. Cross targets and active phytochemicals of COVID-19 and ALI related genes in F. dibotrys were enriched by gene ontology (GO) and KEGG by metscape bioinformatics tools. The interplay network entre active phytochemicals and anti COVID-19 and ALI targets was established and broke down using Cytoscape software. Discovery Studio (version 2019) was used to perform molecular docking of crux active plant chemicals with anti COVID-19 and ALI targets. We identified 1136 chemicals from the aerial parts of F. dibotrys, among which 47 were active flavonoids and phenolic chemicals. A total of 61 chemicals were searched from the rhizome of F. dibotrys, and 15 of them were active chemicals. So there are 6 commonly key active chemicals at the aerial parts and the rhizome of F. dibotrys, 89 these phytochemicals's potential targets, and 211 COVID-19 and ALI related genes. GO enrichment bespoken that F. dibotrys might be involved in influencing gene targets contained numerous biological processes, for instance, negative regulation of megakaryocyte differentiation, regulation of DNA metabolic process, which could be put down to its anti COVID-19 associated ALI effects. KEGG pathway indicated that viral carcinogenesis, spliceosome, salmonella infection, coronavirus disease - COVID-19, legionellosis and human immunodeficiency virus 1 infection pathway are the primary pathways obsessed in the anti COVID-19 associated ALI effects of F. dibotrys. Molecular docking confirmed that the 6 critical active phytochemicals of F. dibotrys, such as luteolin, (+) -epicatechin, quercetin, isorhamnetin, (+) -catechin, and (-) -catechin gallate, can combine with kernel therapeutic targets NEDD8, SRPK1, DCUN1D1, and PARP1. In vitro activity experiments showed that the total antioxidant capacity of the aerial parts and rhizomes of F. dibotrys increased with the increase of concentration in a certain range. In addition, as a whole, the antioxidant capacity of the aerial part of F. dibotrys was stronger than that of the rhizome. Our research afford cues for farther exploration of the anti COVID-19 associated ALI chemical compositions and mechanisms of F. dibotrys and afford scientific foundation for progressing modern anti COVID-19 associated ALI drugs based on phytochemicals in F. dibotrys. We also fully developed the medicinal value of F. dibotrys' s aerial parts, which can effectively avoid the waste of resources. Meanwhile, our work provides a new strategy for integrating metabonomics, network pharmacology, and molecular docking techniques which was an efficient way for recognizing effective constituents and mechanisms valid to the pharmacologic actions of traditional Chinese medicine.

7.
Chinese Traditional and Herbal Drugs ; 54(1):192-209, 2023.
Article in English | Scopus | ID: covidwho-2245653

ABSTRACT

Objective To analyze the medication rules of related epidemic disease prescription in Treatise on Febrile Diseases based on data mining, and the mechanism of "Chaihu (Bupleuri Radix)-Huangqin (Scutellariae Radix)” as the core drugs in the treatment of coronavirus disease 2019 (COVID-19) by network pharmacology, in order to explore the contemporary value of classical prescriptions in the treatment of epidemic diseases. Methods The prescriptions for treating epidemic diseases in Treatise on Febrile Diseases were screened, and the medication rules such as drug frequency, flavor and meridian tropism as well as correlation, apriori algorithm were analyzed by using software such as R language. The mechanism of the core drugs in the medication pattern in the treatment of COVID-19 was explored by the network pharmacology. A "disease-drug-ingredient-target” network was constructed on the selected components and targets with Cytoscape. The key targets were introduced into String database for network analysis of protein-protein interaction (PPI), and gene ontology (GO) functional analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis were conducted in R language. Results A total of 61 prescriptions for treating epidemic diseases in Treatise on Febrile Diseases were included, including 52 traditional Chinese medicines (TCMs). In the top 20 high-frequency drugs, warm drugs, spicy drugs and qitonifying drugs were mainly used, mostly in the spleen and lung meridian. Chaihu (Bupleuri Radix) and Huangqin (Scutellariae Radix) herb pair had the strongest correlation. A total of five clusters were excavated: supplemented formula of Xiaochaihu Decoction (小柴胡汤), Sini Decoction (四逆汤), supplemented formule of Maxing Shigan Decoction (麻杏石甘汤), Fuling Baizhu Decoction (茯苓白术汤) and Dachengqi Decoction (大承气汤). A total of 45 active ingredients, 189 action targets of Bupleuri Radix-Scutellariae Radix herb pair, and 543 targets of COVID-19 were obtained from TCMSP and Genecards, and 64 intersection targets were generated. The results of the network analysis showed that the main components of core drugs pair against COVID-19 may be quercetin, wogonin, kaempferol baicalein, acacetin etc., and the core targets may be VEGFA, TNF, IL-6, TP53, AKT1, CASP3, CXCL8, PTGS2, etc. A total of 1871 related entries and 164 pathways were obtained by GO and KEGG enrichment analysis, respectively. Conclusion In Treatise on Febrile Diseases, the treatment of epidemic diseases mainly chose pungent, warm, spleen-invigorating and qi-tonifying herbs, such as Xiaochaihu Decoction, Sini Decoction and Dachengqi Decoction, etc. It was found that Bupleuri Radix-Scutellariae Radix core herb pair prevent and treat COVID-19 through multi-target targets such as PTGS2, IL-6 and TNF. The ancient prescriptions for treating epidemic disease in Treatise on Febrile Diseases may have significant reference value for the prevention and treatment of new epidemic diseases today. © 2023 Editorial Office of Chinese Traditional and Herbal Drugs. All rights reserved.

8.
Natural Product Communications ; 18(2), 2023.
Article in English | EMBASE | ID: covidwho-2227107

ABSTRACT

Natural Product Communications Special Collection "Phytochemicals against SARS-COV-2 Infection" accepted 13 manuscripts, represented by 2 reviews, 9 original articles, and 1 letter to the editor. These deal with the use of traditional medicines, the use of network pharmacology, and docking studies to identify active compounds with prominent binding to various receptors responsible for internalization and replication, such as ACE2, S-protein, Mpro, PLpro, RdRp, and NSP15 endoribonuclease, as well as the possible use of phytochemicals against virus-associated inflammation. Copyright © The Author(s) 2023.

9.
J Mol Liq ; 374: 121253, 2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2181693

ABSTRACT

Combination drugs have been used for several diseases for many years since they produce better therapeutic effects. However, it is still a challenge to discover candidates to form a combination drug. This study aimed to investigate whether using a comprehensive in silico approach to identify novel combination drugs from a Chinese herbal formula is an appropriate and creative strategy. We, therefore, used Toujie Quwen Granules for the main protease (Mpro) of SARS-CoV-2 as an example. We first used molecular docking to identify molecular components of the formula which may inhibit Mpro. Baicalein (HQA004) is the most favorable inhibitory ligand. We also identified a ligand from the other component, cubebin (CHA008), which may act to support the proposed HQA004 inhibitor. Molecular dynamics simulations were then performed to further elucidate the possible mechanism of inhibition by HQA004 and synergistic bioactivity conferred by CHA008. HQA004 bound strongly at the active site and that CHA008 enhanced the contacts between HQA004 and Mpro. However, CHA008 also dynamically interacted at multiple sites, and continued to enhance the stability of HQA004 despite diffusion to a distant site. We proposed that HQA004 acted as a possible inhibitor, and CHA008 served to enhance its effects via allosteric effects at two sites. Additionally, our novel wavelet analysis showed that as a result of CHA008 binding, the dynamics and structure of Mpro were observed to have more subtle changes, demonstrating that the inter-residue contacts within Mpro were disrupted by the synergistic ligand. This work highlighted the molecular mechanism of synergistic effects between different herbs as a result of allosteric crosstalk between two ligands at a protein target, as well as revealed that using the multi-ligand molecular docking, simulation, free energy calculations and wavelet analysis to discover novel combination drugs from a Chinese herbal remedy is an innovative pathway.

10.
Journal of Chinese medicinal materials ; 44(4):1031-1038, 2021.
Article in Chinese | EMBASE | ID: covidwho-2145401

ABSTRACT

Objective: To analyze the action mechanism of anti-Corona Virus Disease 2019(COVID-19)by Chinese herbal compound and propose a combination of Chinese medicine through network pharmacology and molecular docking. Method(s): Based on the Chinese medicine and Chinese medicine prescription for prevention and treatment of COVID-19, ADME properties(OB>=30%;DL>=0.18)was used for virtual screening;Potentially active molecules in protease Mpro and receptor ACE2 were screened by molecular docking(Binding Scores>4);Through the overlap ratio of active components and key targets, the suggestions on optimizing formula combination were provided. Result(s): 127 Chinese medicinal materials and 885 active components were obtained. The active components close to Lopinavie scores included squalene, shikonin, stigmasterol, etc. The traditional chinese medicinal materials with overlap rate of active molecules>=15% included Ephedrae Herba, Lonicerae Japonicae Flos, Scutellariae Radix, etc. The key Chinese herbal medicines with overlapping rate of key targets>=15% included Glycyrrhizae Radix et Rhizoma, Pinelliae Rhizoma, Curcumae Radix, etc. Conclusion(s): The combinations of Chinese herbal are proposed:(1)Ephedrae Herba, Armeniacae Semen Amarum, Glycyrrhizae Radix et Rhizoma, Curcumae Longae Rhizoma;(2)Lonicerae Japonicae Flos, Scutellariae Radix, Arnebiae Radix, Verbenae Herba;(3)Ephedrae Herba, Pinelliae Rhizoma, Curcumae Radix, Pseudostellariae Radix. Copyright © 2021, Central Station of Chinese Medicinal Materials Information, National Medical Products Administration. All right reserved.

12.
Pharmaceutical Journal ; 306(7949), 2022.
Article in English | EMBASE | ID: covidwho-2064958
13.
Chinese Traditional and Herbal Drugs ; 53(15):4781-4794, 2022.
Article in Chinese | EMBASE | ID: covidwho-2033401

ABSTRACT

Objective To explore the application pattern and mechanism of medicine and food homologous traditional Chinese medicine (TCM) against modern viral diseases. Methods The method of literature mining was applied based on the characteristics of modern viral diseases, combining with ancient books and modern prescriptions for the prevention and treatment of viral diseases to build a relevant prescription database. Then SPSS and R language were used to analyze the high-frequency medicine and food homologous TCM and high confidence medicine and food homologous prescriptions in these prescriptions, and cluster analysis was carried out. The antiviral characteristic active ingredients of high-frequency medicinal and food homologous TCN were identified and analyzed, and the action mechanism of active ingredients against modern viral diseases was evaluate by network pharmacology. Results In the prevention and treatment of modern viral diseases, Gancao (Glycyrrhizae Radix et Rhizoma)-Chenpi (Citri Reticulatae Pericarpium)-Fuling (Poria) had the highest confidence, Glycyrrhizae Radix et Rhizoma-Jiegeng (Platycodonis Radix) had the highest support. At the same time, the prescriptions were clustered and analyzed to obtain Jinyinhua (Lonicerae Japonicae Flos)-Huangqi (Astragali Radix)-Huoxiang (Agastache rugosa), Glycyrrhizae Radix et Rhizoma-Xingren (Armeniacae Semen Amarum)-Poria-Platycodonis Radix-Citri Reticulatae Pericarpium, Ganjiang (Zingiberis Rhizoma)-Renshen (Ginseng Radix et Rhizoma), Zisu (Perilla frutescens)-Gegen (Puerariae Lobatae Radix), Lugen (Phragmitis Rhizoma)-Sangye (Mori Folium), Shengjiang (Zingiberis Rhizoma Recens)-Dazao (Jujubae Fructus) clustering new prescription. The core action targets of EGFR, CASP3, VEGFA, STAT3, MMP9, HSP90AA1, mTOR, PTGS2, MMP2, TLR4, MAPK14, etc were identified. The action mechanism involved human cytomegalovirus infection, coronavirus disease-coronavirus disease 2019 (COVID-19), etc. The core action pathway were phosphatidylinositol-3/kinase protein kinase B (PI3K/Akt) signal pathway, mitogen activated protein kinase (MAPK) signal pathway, interleukin-17 (IL-17) signal pathway, Janus kinase/signal transducer and activator of transcription (JAK/STAT) signal pathway, etc. Conclusion Through data mining, six new prescriptions for preventing and controlling modern viral diseases were obtained, and the mechanism of action was preliminarily discussed, which provided some reference for the research and development of medicine and food homologous TCM prescriptions for the prevention and treatment of viral epidemics and related health products.

14.
Molecules ; 27(18)2022 Sep 13.
Article in English | MEDLINE | ID: covidwho-2033066

ABSTRACT

Coronavirus disease (COVID-19) is a viral disease caused by the SARS-CoV-2 virus and is becoming a global threat again because of the higher transmission rate and lack of proper therapeutics as well as the rapid mutations in the genetic pattern of SARS-CoV-2. Despite vaccinations, the prevalence and recurrence of this infection are still on the rise, which urges the identification of potential global therapeutics for a complete cure. Plant-based alternative medicine is becoming popular worldwide because of its higher efficiency and minimal side effects. Yet, identifying the potential medicinal plants and formulating a plant-based medicine is still a bottleneck. Hence, in this study, the systems pharmacology, transcriptomics, and cheminformatics approaches were employed to uncover the multi-targeted mechanisms and to screen the potential phytocompounds from significant medicinal plants to treat COVID-19. These approaches have identified 30 unique COVID-19 human immune genes targeted by the 25 phytocompounds present in four selected ethnobotanical plants. Differential and co-expression profiling and pathway enrichment analyses delineate the molecular signaling and immune functional regulations of the COVID-19 unique genes. In addition, the credibility of these compounds was analyzed by the pharmacological features. The current holistic finding is the first to explore whether the identified potential bioactives could reform into a drug candidate to treat COVID-19. Furthermore, the molecular docking analysis was employed to identify the important bioactive compounds; thus, an ultimately significant medicinal plant was also determined. However, further laboratory evaluation and clinical validation are required to determine the efficiency of a therapeutic formulation against COVID-19.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Cheminformatics , Humans , Molecular Docking Simulation , Network Pharmacology , Transcriptome
15.
Natural Product Communications ; 17(8), 2022.
Article in English | EMBASE | ID: covidwho-1986555

ABSTRACT

Objectives: Coronavirus disease 2019 (COVID-19) has had a global impact and is spreading quickly. ChuanKeZhi injection (CKZI) is widely used in asthma patients. In this paper, we aimed to explore active compounds of CKZ and determine potential mechanisms against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through network pharmacology, molecular docking and dynamic simulation studies. Materials and Methods: We used the Systematic Pharmacology Database and Analysis Platform of Traditional Chinese Medicine (TCMSP) to screen active compounds and potential target proteins of CKZ. COVID-19 target genes were screened via the American National Center for Biotechnology Information (NCBI) gene database and human gene database (GeenCards). The protein interaction network was constructed by the Protein Interaction Network Database (Search Tool for the Retrieval of Interacting Genes/Proteins (STRING)) platform. GO enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed by the Metascape database. The main active compounds of CKZ were docked with angiotensin-converting enzyme 2 (ACE2), spike protein S1, and SARS-CoV-2-3CL pro and also docked with hub targets. We performed molecular dynamics (MD) simulation studies for validation. Results: We finally obtained 207 CKZ potential targets and 4681 potential COVID-19 targets. Key targets included mainly AKT1, TNF, IL6, VEGFA, IL1B, TP53, JUN, CASP3, etc. There were 217 Gene Ontology (GO) items in the GO enrichment analysis (p < 0.05). The main KEGG pathways included the advanced glycation end products (AGE)- receptor for AGE (RAGE) signalling pathway in diabetic complications, rheumatoid arthritis, chemical carcinogenesis-receptor activation, alcoholic liver disease, etc. Molecular docking and dynamics simulation studies both exhibited great binding capacity. Conclusions: Network pharmacology, molecular docking and dynamics simulation studies were used to identify the potential and key targets, pharmacological functions, and therapeutic mechanisms of CKZI in the treatment of COVID-19. CKZI may be an effective and safe drug in COVID-19 treatment. However, further work is needed for validation.

16.
Pharmacia ; 69(3):689-697, 2022.
Article in English | EMBASE | ID: covidwho-1969584

ABSTRACT

Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Despite the fact that various therapeutic compounds have shown potential prevention or treatment, no specific medicine has been developed for the COVID-19 pandemic. Natural products have recently been suggested as a possible treatment option for COVID-19 prevention and treatment. This study focused on the potential of Coriander sativum L. (CSL) against COVID-19 based on network pharmacology approach. Interested candidates of CSL were identified by searching accessible databases for protein–protein interactions with the COVID-19. An additional GO and KEGG pathway analysis was carried out in order to identify the related mechanism of action. In the end, 51 targets were obtained through network pharmacology analysis with EGFR, AR, JAK2, PARP1, and CTSB become the core target. CSL may have favorable effects on COVID-19 through a number of important pathways, according to GO and KEGG pathway analyses. These findings suggest that CSL may prevent and inhibit the several processes related to COVID-19.

17.
Indian Journal of Pharmaceutical Sciences ; 84(3):617-630, 2022.
Article in English | EMBASE | ID: covidwho-1957666

ABSTRACT

Drug repositioning may be a promising way to find potential therapies against coronavirus disease 2019. Although chloroquine and hydroxychloroquine showed controversial results against the coronavirus disease 2019 disease, the potential common and diverging mechanisms of action are not reported and need to be dissected for better understanding them. An integrated strategy was proposed to systematically decipher the common and diverging aspects of mechanism of chloroquine and hydroxychloroquine against coronavirus disease 2019-disease network based on network pharmacology and in silico molecular docking. Potential targets of the two drugs and coronavirus disease 2019 related genes were collected from online public databases. Target function enrichment analysis, tissue enrichment maps and molecular docking analysis were carried out to facilitate the systematic understanding of common and diverging mechanisms of the two drugs. Our results showed that 51 chloroquine targets and 47 hydroxychloroquine targets were associated with coronavirus disease 2019. The core targets include tumor necrosis factor, glyceraldehyde 3-phosphate dehydrogenase, lymphocyte-specific protein-tyrosine kinase, beta-2 microglobulin, nuclear receptor coactivator 1, peroxisome proliferator-activated receptor gamma and glutathione disulfide reductase. Both chloroquine and hydroxychloroquine had good binding affinity towards tumor necrosis factor (affinity=-8.6 and -8.4 kcal/mol, respectively) and glyceraldehyde 3-phosphate dehydrogenase (-7.5 and -7.5 kcal/mol). Chloroquine and hydroxychloroquine both had good affinity with angiotensin-converting enzyme 2, 3-chymotrypsin-like protease and transmembrane serine protease 2. However, hydroxychloroquine manifested better binding affinity with the three proteins comparing with that of chloroquine. Chloroquine and hydroxychloroquine could have potential to inhibit over-activated immunity and inflammation. The potential tissue-specific regulation of the two drugs against severe acute respiratory syndrome coronavirus 2 infection may related with the lung, liver, brain, placenta, kidney, blood, eye, etc. In conclusion, our data systematically demonstrated chloroquine and hydroxychloroquine may have potential regulatory effects on coronavirus disease 2019 disease network, which may affect multiple organs, protein targets and pathways. Routine measurements of the chloroquine and hydroxychloroquine blood concentrations and tailored therapy regimen may be essential. But, further rigorous and high quality randomized controlled clinical trials are warranted to validate the antiviral effects of chloroquine and hydroxychloroquine against severe acute respiratory syndrome coronavirus 2. Our proposed strategy could facilitate the drug repurposing efforts for coronavirus disease 2019 treatment.

18.
Natural Product Communications ; 17(7), 2022.
Article in English | EMBASE | ID: covidwho-1956964

ABSTRACT

Objective: The Chinese herbal formula Huo-Xiang-Zheng-Qi (HXZQ) is effective in preventing and treating coronavirus disease 19 (COVID-19) infection;however, its mechanism remains unclear. This study used network pharmacology and molecular docking techniques to investigate the mechanism of action of HXZQ in preventing and treating COVID-19. Methods: The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) was used to search for the active ingredients and targets of the 10 traditional Chinese medicines (TCMs) of HXZQ prescription (HXZQP). GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledge Base (PharmGKB), Therapeutic Target Database (TTD), and DrugBank databases were used to screen COVID-19-related genes and intersect them with the targets of HXZQP to obtain the drug efficacy targets. Cytoscape 3.8 software was used to construct the drug-active ingredient–target interaction network of HXZQP and perform protein–protein interaction (PPI) network construction and topology analysis. R software was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Finally, AutoDock Vina was utilized for molecular docking of the active ingredients of TCM and drug target proteins. Results: A total of 151 active ingredients and 250 HXZQP targets were identified. Among these, 136 active ingredients and 67 targets of HXZQP were found to be involved in the prevention and treatment of COVID-19. The core proteins identified in the PPI network were MAPK1, MAPK3, MAPK8, MAPK14, STAT3, and PTGS2. Using GO and KEGG pathway enrichment analysis, HXZQP was found to primarily participate in biological processes such as defense response to a virus, cellular response to biotic stimulus, response to lipopolysaccharide, PI3K-Akt signaling pathway, Th17 cell differentiation, HIF-1 signaling pathway, and other signaling pathways closely related to COVID-19. Molecular docking results reflected that the active ingredients of HXZQP have a reliable affinity toward EGFR, MAPK1, MAPK3, MAPK8, and STAT3 proteins. Conclusion: Our study elucidated the main targets and pathways of HXZQP in the prevention and treatment of COVID-19. The study findings provide a basis for further investigation of the pharmacological effects of HXZQP.

19.
Chinese Pharmacological Bulletin ; 36(9):1309-1316, 2020.
Article in Chinese | EMBASE | ID: covidwho-1863006

ABSTRACT

Aim To explore the active compound of Maxingganshi decoction in treatment of novel coronavirus pneumonia(COVID-19). Methods With the help of TCMSP database, the chemical components and action targets of ephedra, almond, licorice, and gypsum in Maxingganshi decoction were searched, and then a C-T network, protein interaction analysis, GO functional enrichment analysis, and KEGG pathway enrichment were constructed. Analysis was performed to predict its mechanism of action. Results A total of 120 compounds in Maxingganshi decoction corresponded to 222 targets. PTGS2, ESR1, PPARG, AR, NOS2, NCOA2 acted on PI3K-Akt signaling pathway, TNF signaling pathway, IL-17 signaling pathway, T cell receptor signaling pathways, etc. The results of molecular docking showed that the affinity of quercetin, kaempferol, glabridin and other core compounds was similar to recommended drugs in treatment of COVID-19. Conclusions The active compounds of Maxingganshi decoction can target multiple pathways to achieve the therapeutic effect of COVID-19.

20.
Int J Antimicrob Agents ; 60(1): 106606, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1851197

ABSTRACT

The COVID-19 pandemic has severely impacted health systems and economies worldwide. Significant global efforts are therefore ongoing to improve vaccine efficacies, optimize vaccine deployment, and develop new antiviral therapies to combat the pandemic. Mechanistic viral dynamics and quantitative systems pharmacology models of SARS-CoV-2 infection, vaccines, immunomodulatory agents, and antiviral therapeutics have played a key role in advancing our understanding of SARS-CoV-2 pathogenesis and transmission, the interplay between innate and adaptive immunity to influence the outcomes of infection, effectiveness of treatments, mechanisms and performance of COVID-19 vaccines, and the impact of emerging SARS-CoV-2 variants. Here, we review some of the critical insights provided by these models and discuss the challenges ahead.


Subject(s)
COVID-19 , Models, Biological , Antiviral Agents/therapeutic use , COVID-19/epidemiology , COVID-19/pathology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines , Disease Progression , Humans , Pandemics/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL